

èĐÕõ,üÒøýÛÕõ Òãú
ÕÒûÛ ÕõĐøÒÜÛ
õÛÚüãĐÿĐÜÞ Đû
ÕÜøÙÚÝÿõÝøÒÿ
đøĐúÝÚõÕ

KOPIA Dominican Republic Gyuhwa Lee(Martin)

ÅĐãõÛãõÕ

- 1. Necessity of low temperature storage
- 2. Purpose of low temperature Factors affecting quality after harvest
- 3. Type of storage
- 4. Types and Principles of storage facilities
- Management and Shipping Guidelines of agricultural products after Harvesting
 Management of storage facilities

ëÛÚÛÕÕÙõÞ Đû ÿĐĐ õÛÃđÛøÒõÝøÛ ÕõĐøÒÜÛ

Agricultural and livestock products are primary commodity. The yields depend on the weather condition and the Production increases in certain seasons, for that reason the price of agricultural products fall in shipping time due to overage, on the other hand the Price rise suddenly in nonshipping time because of shortage of goods. This can cause confusion in the distribution system, insecurity of dietary safety and a health hazard. To solve this problem, Low temperature storage facilities and methods are highly required

èÝøđĐÕÛ Đû ÿĐĐ õÛÃđÛøÒõÝøÛ ùÒÚõĐøÕ ÒûûÛÚõÙãÜ ØÝÒÿÙõP ExôiðÛø^{ex}üÖøÿŰPÕõ

qualitative and quantitative lose protection

Control of market shipment quantity, variety

and supply : stabilization of distribution

Improvement of nutrition and flavor

: storage, afterripening, fermentation etc.

* Use inopentive law food

Simplification of transportation and storage

seal, sterilization

* increase of agricultural added value

Table. Harvest loss of fruits and vegetables(%)

	Storage	Selection & Packing	Transport ation	Sales	Retail	Total
Radish	•	6.0	12.0	10.1	5.9	34.0
Chili	7.0	2.3	2.8	3.5	4.8	20.4
Garlic	9.1	3.1	1.8	6.3	6.4	26.7
Apple	5.7	6.3	0.8	4.7	1.8	19.3

ËÒÙã æÒÚõĐø Đû ÒÜøÙÚÝÿõÝøÒÿ đøĐúÝÚõ ÕĐõøÒÜÚ

Factors	Subsections	Contribution (%)
	Variety	20
	Field(Wet/dry)	15
Cultivate	Fertilization	25
Factors	Irrigation	10
	Pest control	30
	Subtotal	100
	Harvest time	20
	Package selection	10
Before-Storage	Storage container	10
Factors	Curing and Precooling	45
	Warehousing	15
	Subtotal	100
	Maintain temperature	30
	65-70% humidity maintain	40
Storage Factors	0.2-0.5m/s wind maintain	15
Storage Factors	Disinfection of storage	10
	Decompose check	5
	Subtotal	100

ÍÝÒÿÙõÞ ÒÕÕÝøÒãÚÛ ûĐø ÒûõÛø üÒøýÛÕõ

Physiological function after harvesting	Distribution environment	Quality assurance technology
 Respiration Transpiration Ethylene occurrence Ripning Disorder Physiologycal : high, low temperature, freeze, gas physical : shake, shock pathology : bacteria, fungi 	 Temperature humidity gas composition ethylene Light Shake, Shock Chemical 	 Precooling(Air,Water,Vacumm, Ice) Preprocessing(clean , disinfection, Curing) package(Cardboard, MAP) Storage(Low tem. ,CA,freeze) Transportation(room, low temperture, Freeze)

æÒUDĐøÕ ÒûûÛÚõÙãÜ ØÝÒÿÙõP ÒûõÛø üÒøýÛÕõ

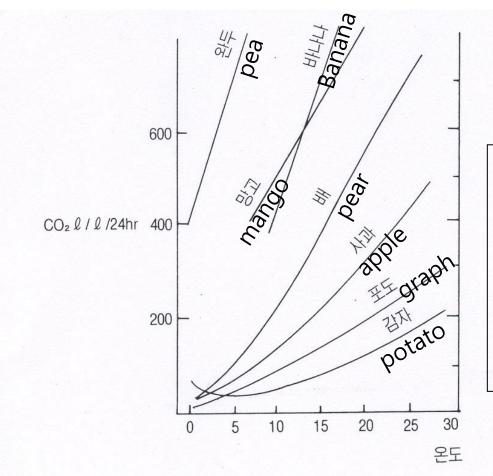
I. Respiration

2. transpiration

3. Ethylene effect

4. Pathological disorder : fungal, microbial decay

5. Physiological disorder : high, low tem. Freeze, gas

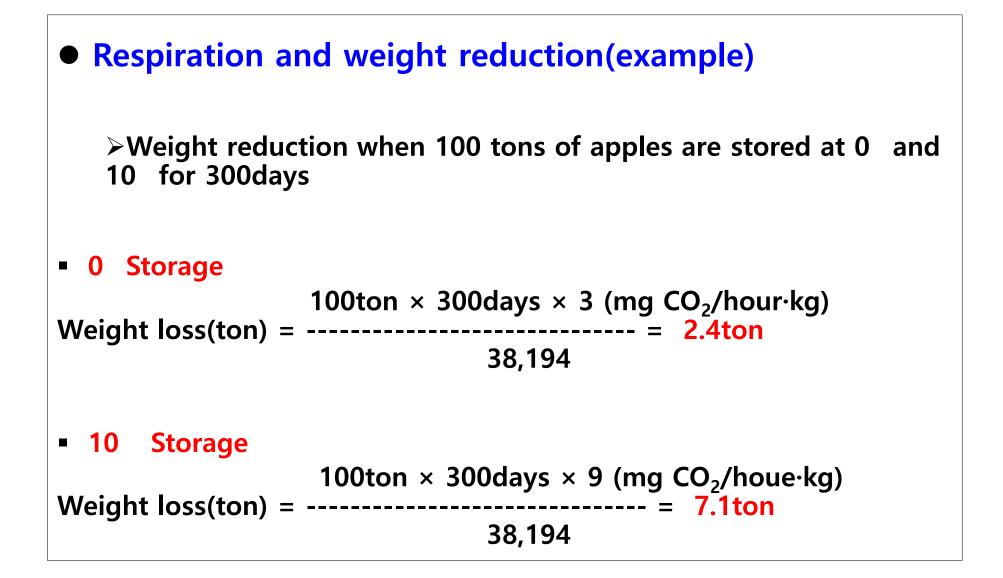

6. Physical disorder : shake, shock

7. ripening : aging

• $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 674kcal$ (glocose)(oxygen) (Carbondioxide) (water) (thermal energy) -When 1g of glucose is broken down by respiration, 1.47g of carbon dioxide, 0.6g of water, 3.74kcal thermal energy are generated - Decomposition of reserve substance, Weight decrease and freshness decline due to respiration \rightarrow more respiration, more acceleration

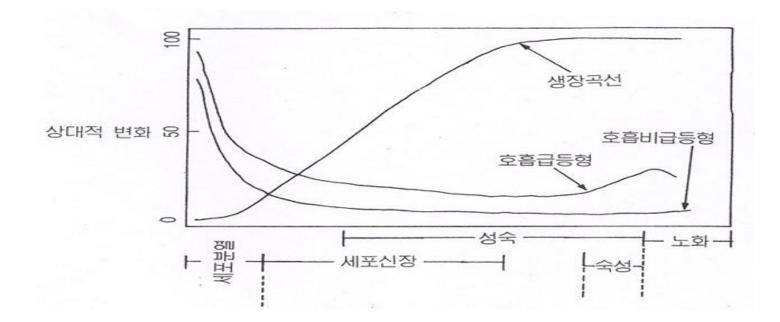
- If the heat is not removed, the ambient temperature and respiration are higher, which reduce the quality of products

• Temperature and respiration


 Respiration is 1.6 to 2.0 times for every 5 °C increase in temperature

• Conversely, for every 5 °C drop in

temperature, the respiration rate


decreases by 50% to 70%

 To prevent respiration, cooling(pre-cooling, cold storage) is requered

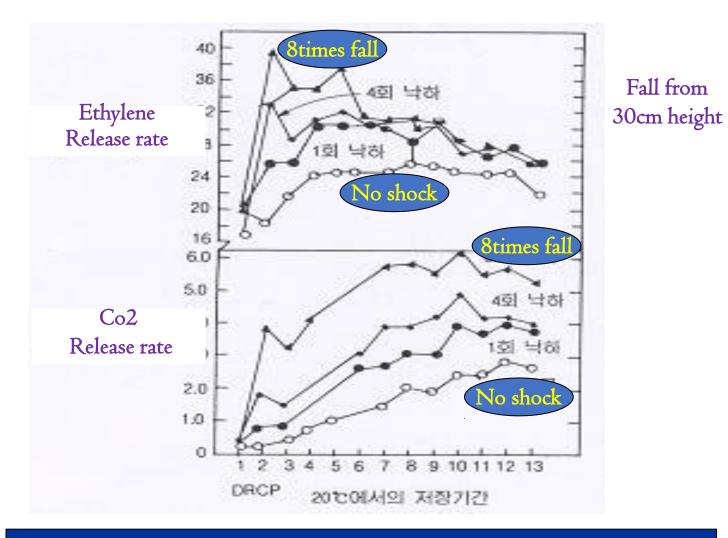
Respiration aspect and Quality change

Physiological, Chemical and organizational changes are rapidly occurring in climacteric fruits when respiration rises, and storage is clearly impaired based on this. Therefore, the principle of long-term storage Is to harvest at a time when respiration is the smallest (preclimacteric minimum) before the respiratory rise, and to devise methods such as low temperature and low pressure storage. However, if harvest time is advanced, storage is good, but quality is poor, so it must be harvested in a balance between storage and quality

Respiration rate by storage temperature of agricultural

products

Items	0°C	1 0 °C	20~21 ℃	25~26 ℃
Lettuce	330~930	1,760~2,500	2,820~3,330	4,060~5,070
Spinach	1,006~1,240	7,430~12,400	9,550~15,930	
Cabbage	250~350	1.030~1,440	1,540~2,720	2,700~3,530
Sweetcorn	1,660~2,850	8,390~11,110	11,440~13,360	
Cucumber	-	830~1,840	780~2,670	1.060~3,050
Tomato	-	1,340~1,610	1,340~2,440	1,660~2,900
Bell pepper	-	1,110~3,180	1,260~3,600	1,990~4,110
Carrot	530~1,130	1,440~2,970	2,550~5,270	-
Potato	-	330~660	450~880	-
Sweet potato	-	1,080~1,340	-	-
Apple	130~230	760~1,710	930~1,940	-
Peach	230~350	1,840~2,340	3,286~5,670	4,510~6,750
Graph	80~130	1,870~2,140	2,470~3,580	3,450~3,960
Persimmon	-	660~780	1,110~1,340	1,610~2,220
Strawberry	680~980	3,930~5,120	5,670~10,860	9,370~11,690

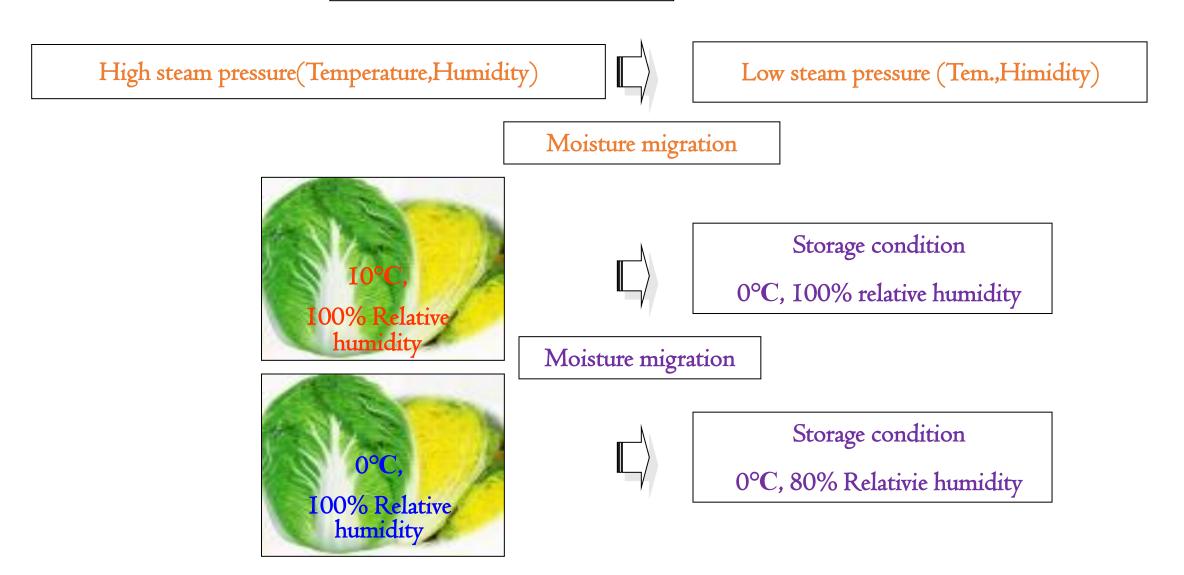

• Classification according to the aspect of respiration

Climacteric type	Non-climacteric type
Persimmon Apple Mango Mango Apricot Melon Waternelon fig Avocado Banana Kiwi Pear Tomato Peach Papaya	Eggplant Orange Chili pepper Cucumber Strawberry Olive Lemon Pineapple Mandarin Graph Cherry

- Harversting and cooling periods are

important for suppressing respiration

• Physical stress and respiration rate



Vibration and shock suppression is necessary to suppress breathing

• Transpiration and epidermal dry

• Cause of Transpiration

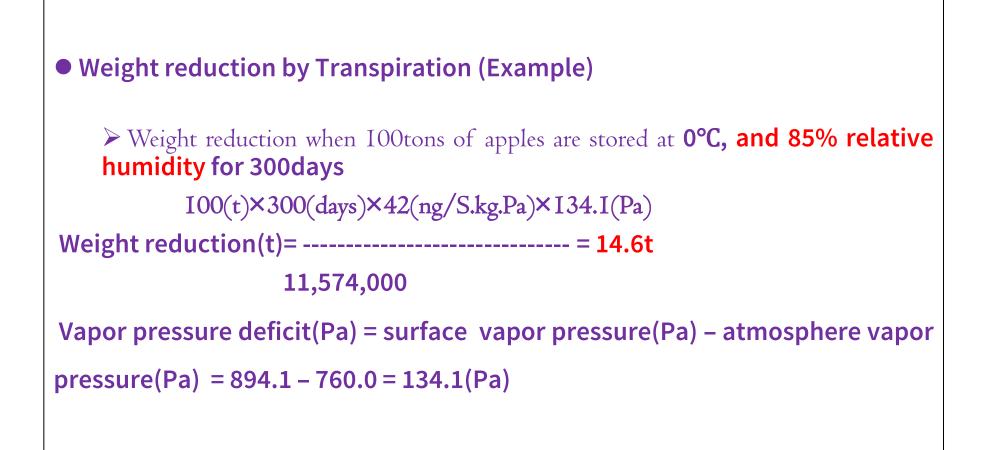
æÒÚõĐøÕ ÙãýĐÿýÛú Ùã đĐÕõ, üÒøýÛÕõ õøÒãÕđÙøÒõÙĐã

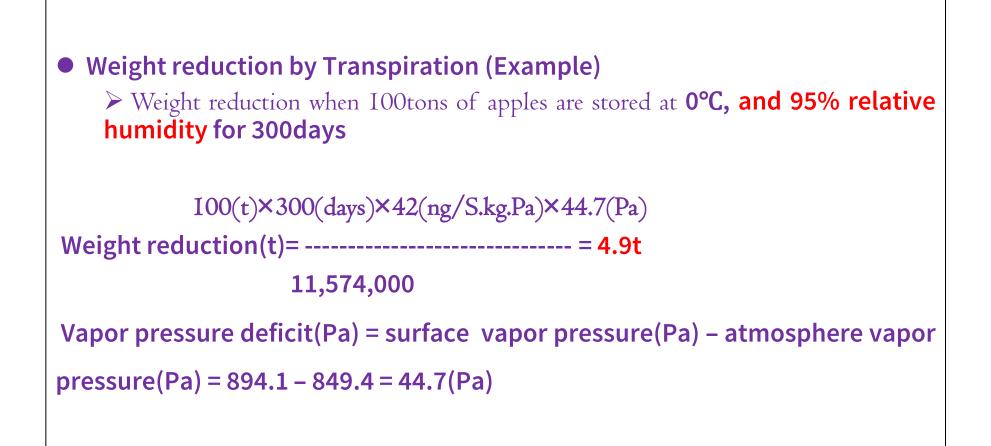
I. maturity : young cell -> increase

2. temperature : High -> increase

3. Humidity : Low -> increase

4. Wind : High speed-> increase


5. Pressure : Low -> increase


6. Light : Vibration, Shock

7. Damage : aging

îøÒãÕđÙøÒõÙĐã ÚüÒøÒÚõÛøÙÕõÙÚÕ Đû æøÝÙõÕ Òãú ýÛÜÛõÒòÿÛÕ

	Charcateristic	Vegetables	Fruits
A type	Low temperature -> extremely decrease transpiration	Potato, Sweet potato, Onion, Pumpkin, Cabbage, Carrot	Mandarin, Apple, Pear, Watermelon
B Type	Low temperature -> Decrease transpiration	Radish, Cauliflower, Tomato, Pea	Chestnut, Peach, Melon, Graph(Western), Fig,
C type	Temperature -> No effect on transpiration	Celeri, Asparagus, Eggplant, Cucumber, Spinach, Mushroom	Strawberry, Graph(american) Cherry

Rapid cooling and high humidity maintenance are essential to prevent water loss

3. Ethylene action

• Etyhlene production is associated with an increased respiration

• Causes discoloeration, aging, corruption, etc.

High ethylene crop	Apple, Pear, Apricot, Peach, Tomato, Plum, Banana(full ripe), Kiwi(full ripe), Mango, Fig, Melon
	Apple, Pear, Apricot, Peach, Tomato, Plum, Orange,
Ethylene-	Banana(unripe), Broccoli, Chinese cabbage,
sensitive crop	Carrot, Cauliflower, Cucumber, Eggplant,
	Kiwi(unripe), Mango, Lettuce, Chili pepper,
	Spinach Watermelon Sweetpotato

• Ethylene counterplan

- -Avoid : Avoid high levels of ethylene
- Be careful of vibration and shock when harvesting,
- transporting, wiring, or packing
- In storage, remove wounds, disease-infested insects,
- overripen fruits
- Avoid mixed storage, transportation, and vibration by
- considering ethylene gerneration and sensitivity
- Disinfecting and maintaining cleanliness in the storage area
- -Remove Ethylene : adsorption, decomposition, KMnO₄, ozone ventilation
- -Inhibit : Appropriate cold management(pre-cooling, cold storage)

4. fungal, microbial decay

Container

Environment

tool

Storage environment

4. Corruption prevention from fungi, microbe

• Fungi growth conditions: temperature, moisture, nutrients

• Caused by the growth of the infected fungus during or after

cultivation

Counterplan

Disinfection : Greenhous, Carrying box, Harvesting tool, Storage, Fruit surface

Low temperature storage

>Handling : Prevention of tissue softening due to injury or shock

Strenthening epidermal tissue : Curing, Precautions

ÎõĐøÒÜÛ Đû ÒÜøÙÚÝÿõÝøÒÿ đøĐúÝÚõÕ òÞ đøÛ,ÚĐĐÿÙãÜ

Pre-cooling is the quick cooling of the heat from the agricultural produce to a certain temperature in the production area before transport or storage

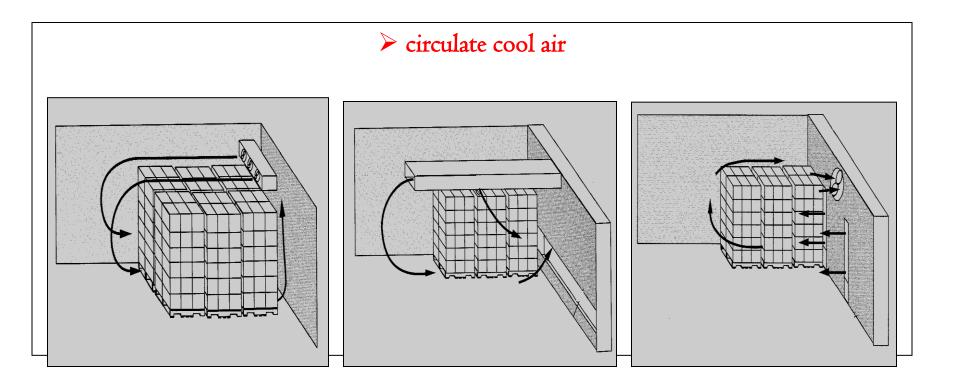
Agricultural products are particularly high in respiration at the time of harvest and are the main contributors to the reduction of lead and deterioration of quality by respiration. We must reduce the temperature of agricultural products as soon as possible to prevent deterioration. The thickness of the pre-cooling material is proportional to the time required to reduce the temperature, therefore Proper use of agricultural container boxes are required

Since pre-cooling in box conditions causes unsuitable and dampness of box, the thinner and bricklying are more effective.

• Effects of pre-cooling

Category	Items	Room tem. distribution	Pre-cooling/Cold chain
Nutrient ingredient	Spinac h	30°C/3days later loss of 85% Vitamin C	After precooling 10°C/21days later 20% loss of Vitamin C
Weight Ioss	Cherry	10°C/3days later 4.4% loss	0.6°Cprecooling/3days later 1.9% reduction
Discolorati on	Spinac h	30°C/3dayslaterchlorophyll55%loss	After precooling 10°C/3days later chlorophyll 2% loss
Damage in Transporti ng	Straw berry	10kg/3bundle/room temperature occur 65% damaged fruits	After precooling 500g small packing under 5% occur damaged fruits
Expire date	Lettuce	in 15°C -> 3days	after precooling in 1°C -> 35days

• Precooling effects by crops


category	High in effect	Normal in effect	Low in effect
Leaf vegetables	Lettuce, Spinach, Broccoli, Asparagus, Celery, Parsley, Chrysanthemum, Chive, water celery, chinese cabbage, Cauliflower	Chinese cabbage, Spring onion, Cabbage	
Fruit vegetable	Strawberry, Sweetcorn, Pea, Cucumber, bell pepper	Cucumber, Tomato, chili pepper	pumpkin, watermelon. melon
Root crop	Carrot	Radish	onion, <mark>garlic,</mark> Potato
The others (forest product)	Mushroom(shiitake, oyster mushroom, etc.)	Chestnut	Pine nut
Fruits	Apple, Peach, Graph	Apple, Pear, kiwi fruit	Late maturing variety, mandarin

• Pre-cooling use time

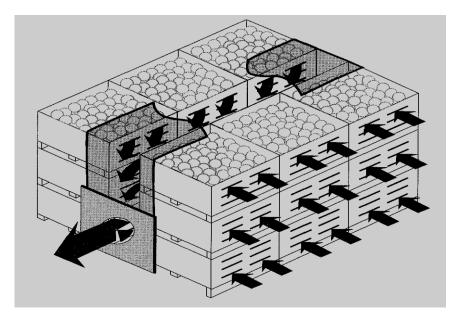
	Pre-cooling use time				
Crops	Differential pressure	Forced draught type	Vacuum type	Water cooling type type	
Pear	5~6 Hours	24~48 Hours			
Graph	5~6	20~25			
Peach	6~8	24~48			
Strawberry	3~4	10~15			
Bean	3~4	20~24			
Broccoli	3~5	10~15			
Chrysanthemum	10~15	24~28			
Spinach	2~3	10~15			
Radish	7~10	20~24			
Carrot	3~5	24~28			
Chinese Cabbage			18min.		
Lettuce			24min.		
Mushroom			24min.		
Potato				34min.	
Carrot				10min.	

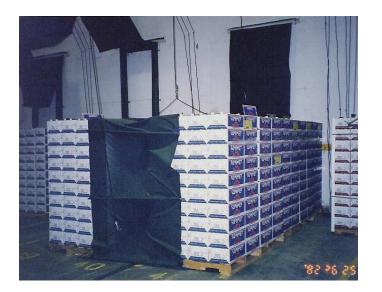
• Force blower precooler

> Air flow rate : beginning $0.005 \text{ m}/\text{s.kg} \rightarrow \text{after freeze } 0.001 \sim 0.002$

Packaging box and load method and cooling speed

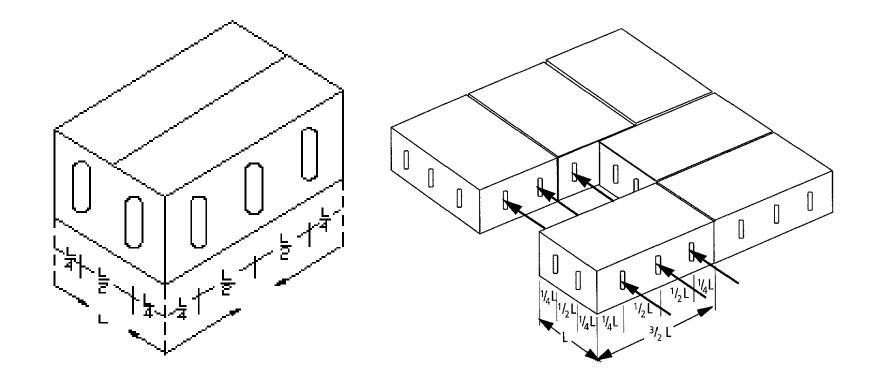
	Air hole ratio(%)	space (cm)	form	Cooling time(hr)
	0	0	-	84
	4	2.5	Air hole dislocation	22
ID 1 APP AND AND A APP AND APP AND A APP AND APP AND A A	4	2.5	Air hole arrayed	18

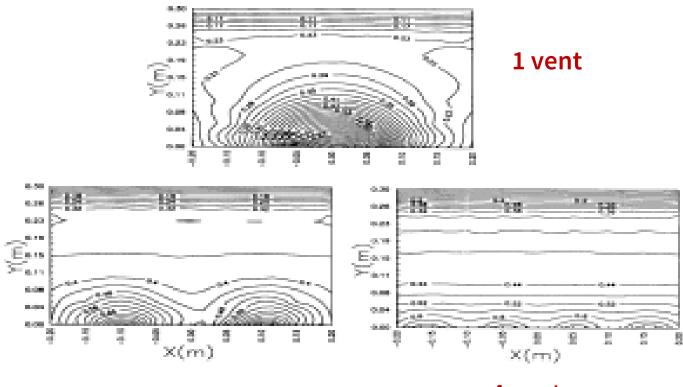




• pressure cooling system

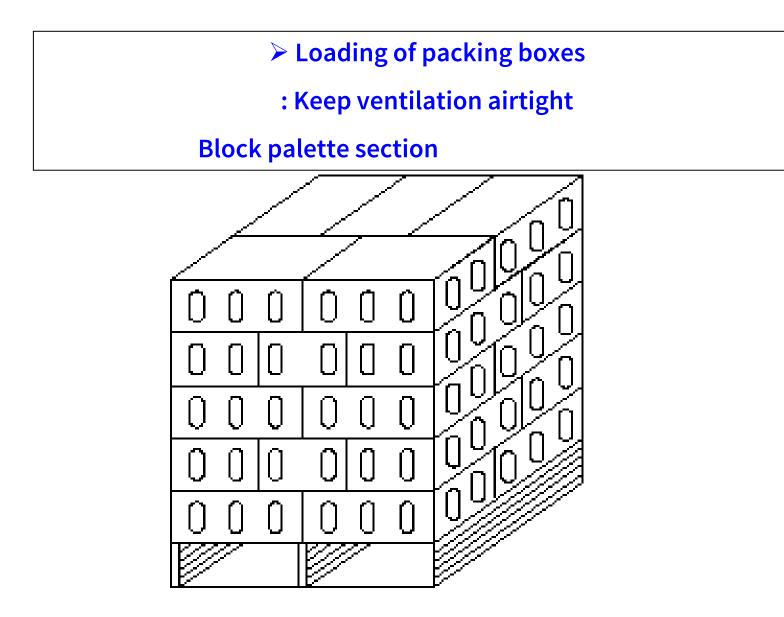
< Center suction type>





<Wall suction type >

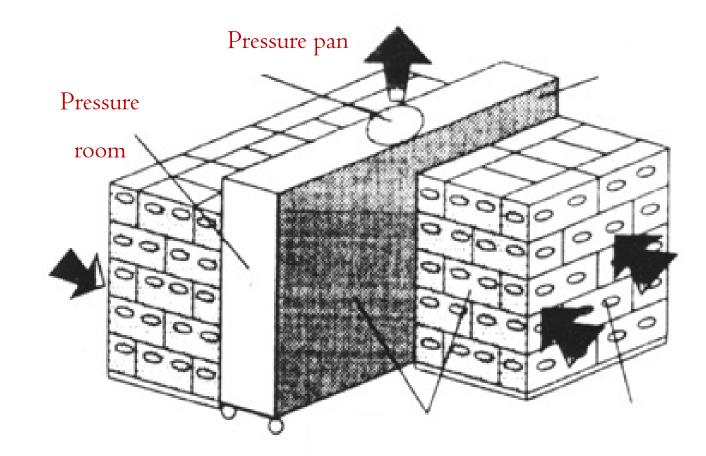
 Packaging box : 3 or more vents, hole area 5%, hole area in middle block is 10%, Caution of the position of the vents



> Number of vents and distribution of airflow in boxes

2 vents

4 vents



> Airflow and cooling rate: 0.04m³/min. water for freezing kg

temperature measurement location : 1 point for each cold air inlet(air) and cold outlet (air temperature)

	Air flow	1/2 Cooling time(min)								
Crops	flow rate(m ³ /min)	entrance		center		exit				
		center	wall	center	wall	center	wall			
mandarin n	0.03	27	38	62	70	107	96			
	0.04	25	37	48	55	80	77			
	0.05	23	29	39	49	64	65			
Tomato	0.03	42		93		110				
	0.04	41		78		94				
	0.05	43		78		96				

simplified pressure cooling system

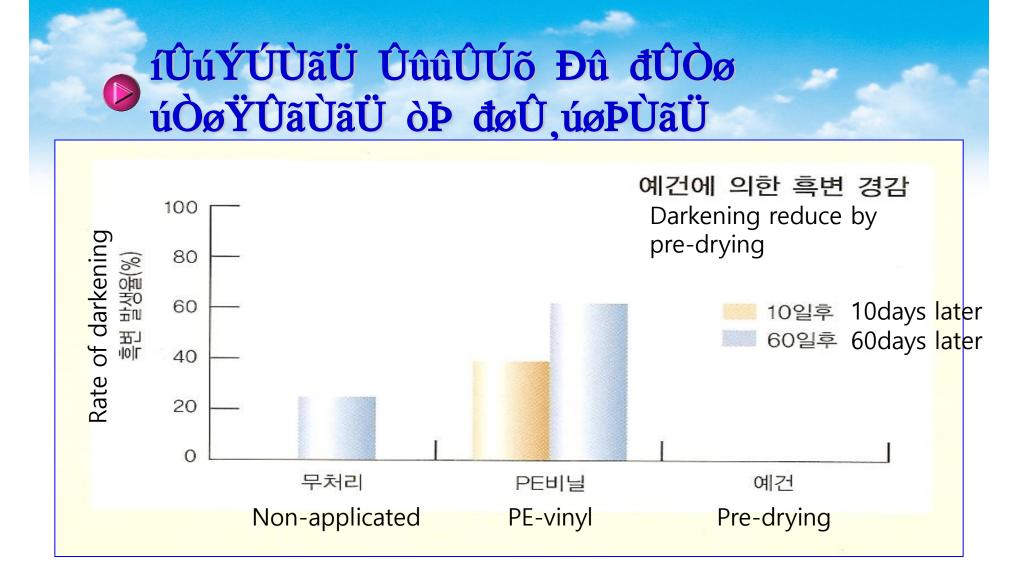
ÎõĐøÒÜÛ Đû ÒÜøÙÚÝÿõÝøÒÿ đøĐúÝÚõÕ òÞ úøÞÙãÜ

(I) Natural drying (Sun curing)
 (2) Artificial drying
 I) Heated air dryer
 2) Dryer by heat plate contact
 (1) Vacuum band drier
 (2) Freeze drier

ÎõĐøÒÜÛ Đû ÒÜøÙÚÝÿõÝøÒÿ đøĐúÝÚõÕ òP đøÛ,úøPÙãÜ

Drying the epidermis slightly before low temperature ware housing

Mandarin, Garlic, Pear, Sweet potato


 Mandarin : 1 to 2 weeks for 3~4% weight reduction(natural pre-drying)

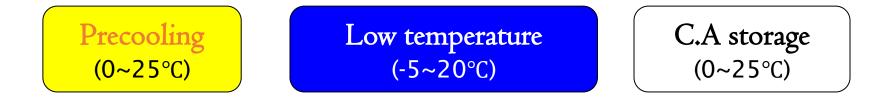
•pear: 7~10days top cover storage

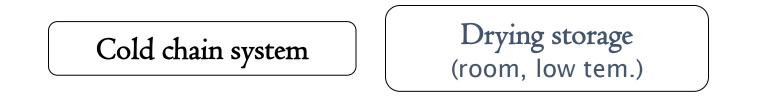
• pre-drying and pericarp darkening of pear

Because the pear is not dense with percutaneous tissue, it is easy for fungi or viruses to in vade, which causes many cases of darkening during sotrage

pre-dry for 5~7 days to prevent darkening

ÎõĐøÒÜÛ Đû ûøÛÕü ýÛÜÛõÒòÿÛÕ


Leaf vegetable rapid cooling and clean with cold water


Strawberry distribution keeps fresh by 'microbial

Kiwi fruit use of cut-off bottle and cake ingredients

îÞđÛÕ Đû ÚĐÿú ÕõĐøÒÜÛ ûÒÚÙÿÙõÙÛÕ ûĐø ÒÜøÙÚÝÿõÝøÒÿ đøĐúÝÚõÕ

ÅĐĐÿÙãÜ ÕõĐøÒÜÛ

‴⁻ òÒ㟠ÕõĐøÒÜÛ

àÒ㟠ÎõĐøÒÜÛ ÙÕ ÝÕÛ õĐ úÙÜ úÛÛđ ÙãõĐ õüÛ ÜøĐÝãú Òãú ÚĐýÛø õüÛ õĐđ ĐÙõü ĐĐĐú' Òãú đÝõ ĐÝõ Ò òøÛÒõüÙãÜ üĐÿÛ Đã ĐãÛ ÕÙúÛ ÕĐ õüÒõ õüÛ ÒÙø úÙÕõøÙòÝõÙĐã Đû õüÛ ÒÜøÙÚÝÿõÝøÒÿ đøĐúÝÚõÕ ÙÕ đĐÕŨÙòÿÛ' Éã ĐÙãõÛø' Ùõ üÒÕ òÛÛã òÿĐÚŸÛú ĐÙõü ÕõøÒĐ ãÛÕõÕ' îüÛ õÛÃđÛøÒõÝøÛ ÕüĐÝÿú òÛ ŸÛđõ Òõ "' ' ÏÕÒòÿÛ ÚøĐđÕ ÒøÛ ÝÕÛú õĐ ÕõĐøÛ ãÝõøÙÛãõÕ ÕÝÚü ÒÕ đĐõÒõĐÛÕ' ÕĐÛÛõ đĐõÒõĐÛÕ' ÚÒòòÒÜÛ'

,⁻ ÅĐÿú ÕõĐøÒÜÛ

ÎõĐøÒÜÛ Đû ÒÜøÙÚÝÿõÝøÒÿ đøĐúÝÚõÕ Òõ Ò õÛÃđÛøÒõÝøÛ ûøĐà ' õĐ "⁄ õüÒõ ÒøÛ ãĐõ ûøĐþÛã ÙÕ ÚÒÿÿÛú ÚĐÿú ÕõĐøÒÜÛ' ÅĐÿú ÕõĐøÒÜÛ Đû ûÒøÃ đøĐúÝÚõÕ üÒÕ ÿĐãÜ òÛÛã ÝÕÛú Ùã ÎÛĐÝÿ ÒøÛÒ ĐãÿÞ ÝÕÙãÜ ãÒõÝøÒÿ ÙÚÛ Òãú ÕãĐĐ' òÝõ õüÙÕ ÚĐÿú ÕõĐøÒÜÛ ÙÕ ÝÕÛú ûĐø ÕÒûÛ ÕõĐøÒÜÛ Đû ûøÛÕü ûÒøÃ đøĐúÝÚõÕ úÝÛ õĐ õüÛ ÒúýÛãõ Đû õüÛ Đû õüÛ ÚÝøøÛãõ ÚĐÿú ÃĐõĐø ÕÞÕõÛÃ Ùã õüÛ ûÙøÕõ üÒÿû Đû õüÛ "K^{õü}

,⁻ æøĐþÛã ÎõĐøÒÜÛ

ÀÜøÙÚÝÿõÝøÒÿ èøĐúÝÚõÕ üÒýÛ øÛÿÒõÙýÛÿÞ ÕüĐøõ ÕõĐøÒÜÛ đÛøÙĐúÕ Òõ ÿĐĐ õÛÃđÛøÒõÝøÛÕ ÒòĐýÛ ûøÛÛþÙãÜ đĐÙãõÕ' òÝõ ÚÒã òÛ ÕõĐøÛú Òõ õÛÃđÛøÒõÝøÛÕ òÛÿĐĐ ûøÛÛþÙãÜ đĐÙãõÕ ûĐø Ò ÚĐãÕÙúÛøÒòÿÛ đÛøÙĐú Đû õÙÃÛ' Éã ûÒÚõ' Ùã ûøĐþÛã ÕõĐøÒÜÛ' øÒđÙú ÚĐĐÿÙãÜ ÙÕ đÛøûĐøÃÛú Òõ Ò ÿĐĐ õÛÃđÛøÒõÝøÛ Đû , ā, Dãú õüÛã ÕõĐøÛú Òõ . ß õĐ ,

ÇÛãÛøÒÿÿÞ' òÿÒãÚüÙãÜ ýÛÜÛõÒòÿÛÕ' đÿÝÃ' ÕõÛÒÃÛú

* ÅĐÿú ÚüÒÙã ÕÞÕõÛÃ

 îĐ
 đøÛýÛãõ
 ØÝÒÿÙõP
 úÛÜøÒúÒõÙĐã
 Đû
 ûøÛÕü

 ÒÜøÙÚÝÿõÝøÒÿ
 đøĐúÝÚõÕ'
 đøĐúÝÚõÕ'

 èøĐúÝÚõÙĐã
 Ę
 èøÛÚĐĐÿÙãÜ
 Ę
 ÚĐÿú

 ÕõĐøÒÜÛ
 Ę
 øÛûøÙÜÛøÒõÛú
 õøÒãÕđĐøõ
 Ę
 ÚĐÿú

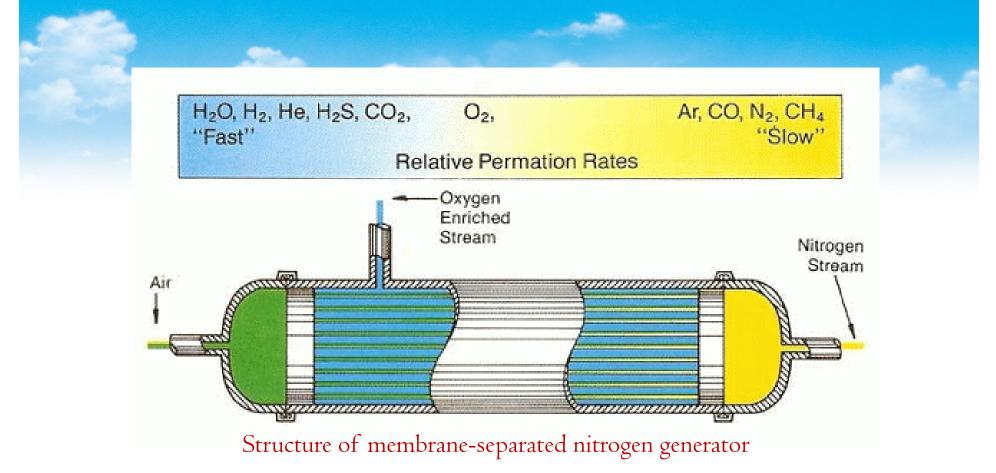
 ÕõĐøÒÜÛ
 Ę
 øÛûøÙÜÛøÕõÛú
 õøÒãÕđĐøõ
 Ę
 ÚĐÿú

 ÕõĐøÒÜÛ
 Ę
 ØÛûøÙÜÂõÝÃđõÙĐã
 õüÙÕ
 ðøĐÚÛÕÕ
 ÙÕ

 ÚÒÿŷÛú
 ÅĐÿú
 ÚüÔÙã
 ÅĐÿú
 ÚüÔÙã
 ÕÞÕõÛÃ

Å'À ÎõĐøÒÜÛ "ÅĐãõøĐÿÿÛú ÒõÃĐÕđüÛøÛ ÎõĐøÒÜÛ⁻

CA storage is a method of artificially adjusting the air composition of agricultural storage containers and storing them at low temperatures. The atmosphere is mixed with O221%, CO20.035%, N278% and other trace gases. Harvested Agricultural products like vegetables, fruits, mushrooms and grains are living organics that can respiration, if they are put in a sealed container and the O₂ is reduced $3\sim 5\%$, CO₂ is stored up to $3\sim 5\%$, it can be stored for a long time while suppressing metabolic effects such as respiration. In addition, even if agricultural products are stored in PE film, after a certain period time, O2 in the package is reduced due to respiration and CO2is increased to create and stored the environment like CA storage, which is also known as the simplified CA storage method

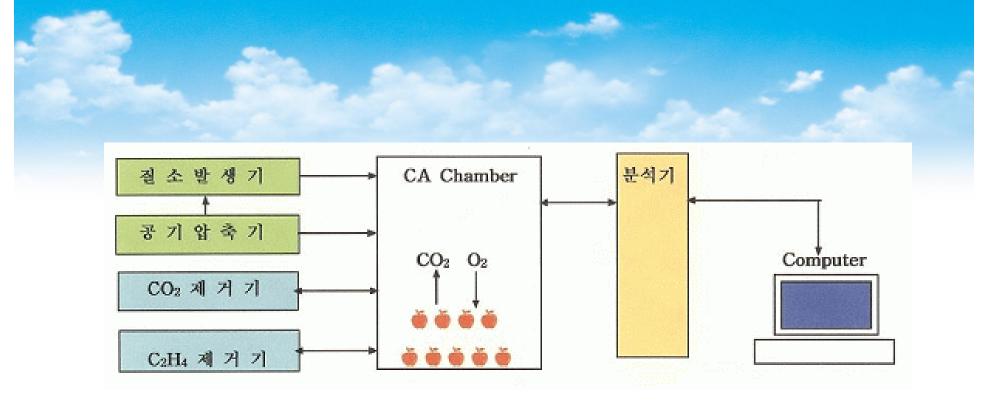

Å'À ÎõĐøÒÜÛ "ÅĐãõøĐÿÿÛú ÒõÃĐÕđüÛøÛ ÎõĐøÒÜÛ⁻

In Italy, about 70 to 80 percent of the apple is stored in CA storage, while the United States stores about 50 percent of the harvest and Japan about 40 percent. I) CA Storage facilities (I) Storehouse : Complete Storage (2) N₂generator : Rapid C.A storage (3) CO₂disposal equipment - absorbent(lime, Potassium carbonate, NaOH) (4) Cooling, dehumidification device (5) Breather bag : pressure change device

2) CA storage method

(I) Practical CA storage

- use 2.5~5% oxygen concentration, CO2increase
- (2) low oxygen CA storage (Ultra Low Oxygen, ULO storage)
 - reducing oxygen concentration below 2% to 1% limit
- (3) Rapid CA Storage : use Pressure Swing Adsorption
 - suitable for small storage area such as $100 \sim 150 \text{m}^3$
- (4) Low ethylene CA storage : Using the ethylene remover, reduce the ethylene concentration in the CA storage to tens of ppm.
- (5) MA Storage (Modified Atmosphere)
- Storage method that obtains CA storage effect by using proper gas permeability packaging material.



The membrane-separated nitrogen generator consists of a nitrogen separator containing a bunch of capillary tubes in a permeable membrane with air cleaner and air compressor, and the nitrogen separator has the function to produce nitrogen by removing oxygen, carbon dioxide, etc. from the air.

Structure of CO₂ remover

The inside of the carbon dioxide remover is filled with activated carbon and during the absorption process, carbon dioxide in the storage area is absorbed by the activated carbon and carbon dioxide is released out of the storage area.

Principles of removable CA storage

After putting the fruit in the storage, pump nitrogen gas produced by generator into the storage to reduce the oxygen concentration in the storage to a certain level. If the concentration of carbon dioxide increases due to breathing of the nitrogen, the CO2 extractor is activated to remove carbon dioxide. 3) CA Storage effect

(I) Inhibiting the generation of ethylene : long duration of quality maintenance

(2) suppressing the decomposition of chlorophyll

(3) suppress of fruit softening

(4) Inhibiting physiological function and delaying the reduction of organic acids

(5) Inhibition of germination and uprooting

• Effect of extended storage period by CA Storage

ltom	Storage possibility period					
ltem	Low temperature Storage	CA Storage				
Apple(Fuji)	6 Months	11 Months				
Pear (Singo)	6 Months	9 Months				
Kiwi fruit	4 Months	7 Months				
Persimmon	4 Months	7 Months				
Onion	7 Months	9 Months				
Chestnut	6 Months	9 Months				
Peach	2 Weeks	40 Days				
Cabbage	3 Months	7 Months				
Tomato	2 Weeks	2 Months				
Watermelon	1 Months	2 Months				

• CA Storage items(Fruits)

ltomo	Tem.(°C)	CA Condition		СА	Nata	
ltems	Range	O ₂ (%)	CO ₂ (%)	Effect	Note	
				excellen		
				t		
Apple	0~5	1~3	1~5	excellen		
Kiwi				t	Storage as 50% CA storage of yield(USA)	
	0~5	1~2	3~5		Limited commercial use	
Peach				good		
Pear(Asia)	0~5	1~2	3~5	good	Limited commercial use	
pear(Europe)	0~5	2~4	0~1	excellen	Limited commercial use	
	0~5	1~3	0~3		Limited commercial use	
Persimmon	0~5	3~5	5~8	t	Limited commercial use	
Walnut,	0~25	0~1	0~100	good	Pest control	
chestnut				excellen		
Banana	12~15	2~5	2~5	t	Partial Transport use	
Lemon	10~15	5~10	0~10	excellen	No commercial use	
Orango	5~10	5~10	0~5	+	No commercial use	

• CA Storage items(Vegetables)

ltome	Tem.(°C) CA Conc		ndition CA		Noto		
ltems	Range	O ₂ (%)	CO ₂ (%)	Effect	Note		
Asparagus Cabbage Carrot Corn Cucumber Chives Lettuce Mushroom Onion Potato Radish Spinach Tomato	0~5 0~5 0~5 0~5 8~12 0~5 0~5 0~5 0~5 4~12 0~5 4~12 0~5 0~5 12~20	air 2~3 - 2~4 3~5 1~2 1~3 air 1~2 - - - air 3~5	5~10 3~6 - 5~10 0 3~5 0 10~15 10~20 - - 10~20 0~3	nt None good Normal Good Good Normal Normal None	Limited commercial use Limited commercial use Maintain relative humidity 98~100% Limited commercial use No commercial use Limited commercial use Limited commercial use Limited commercial use Maintain relative humidity 98~100%No commercial use		
				Good	Limited commercial use		

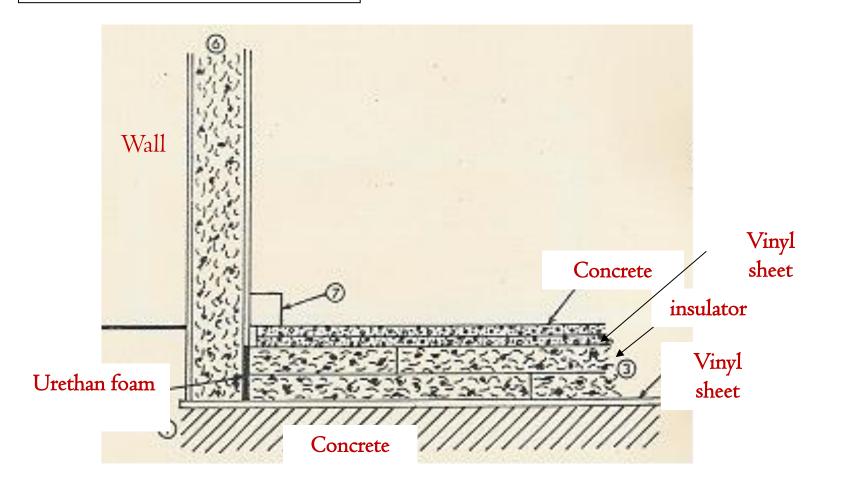
• Low temperature Storage

Orchard management

> Remove infected fruits

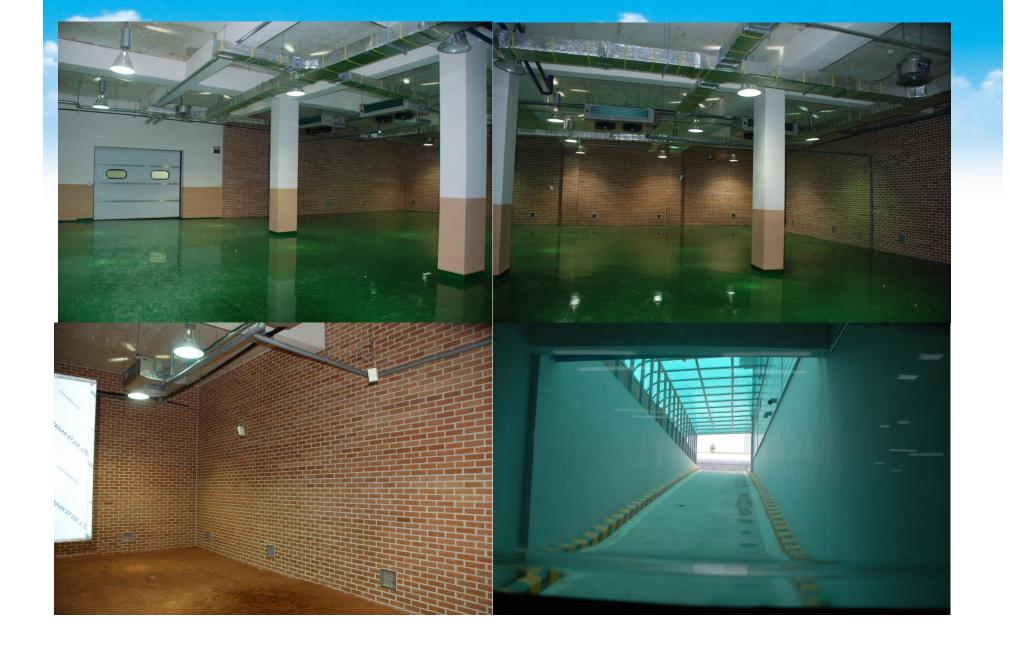
No sun exposureNo Ground contact

Low temperature storage management


- Keep airtight
 - Fill gaps in storage walls
 - Minimize opening and closing of doors while saving
 - Separation of long-term and short-term storage rooms

Insulation

- Insulation prevents cold air from the storage area.
- Materials : Polyurethan, Polystyrene
- Form: Sandwich panel(for freezing, architecture)
- Thickness(for freezing) : Polyurethan 10cm, Polystyrene 15cm


- Insulation and airtightness can result in longer operating hours of the chillers, resulting in ore frost in the unit cooler and lower humidity, resulting in more water loss and higher power costs.

Storage of floor and wall

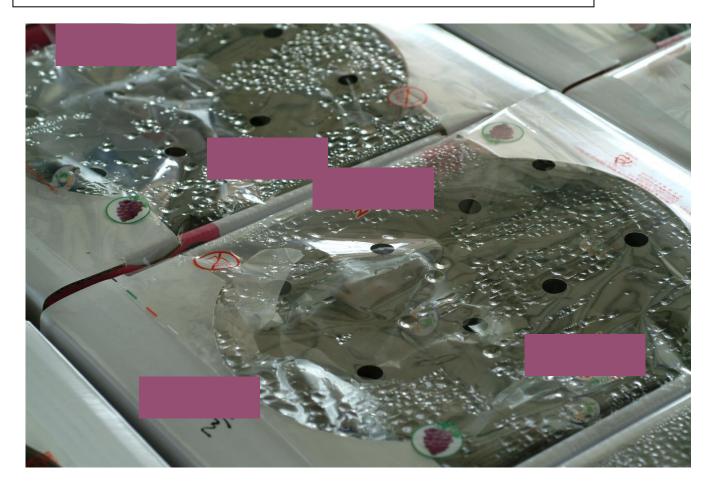
- Disinfection
 - Storage and Storage containers
 - Wash chlorine or kitchen cleaners with water
 - Dry it completely after cleaning

(Before Disinfection)

(After Disinfection)

Storage goods preparation

- Remove rot or wound, bruised, over-aged
- Pre-treatment : Pre-drying, Curing
- Insert goods
 - Storage is pre-cooled
 - Cooler shutdown during warehousing operations
 - Receiving time : When the ambient temperature is
 - lowest (Morning, Evening)
 - Daily receiving volume : 1/5 ~ 1/7(reducing cooling load,


preventing condensation)

Pile-up of storage

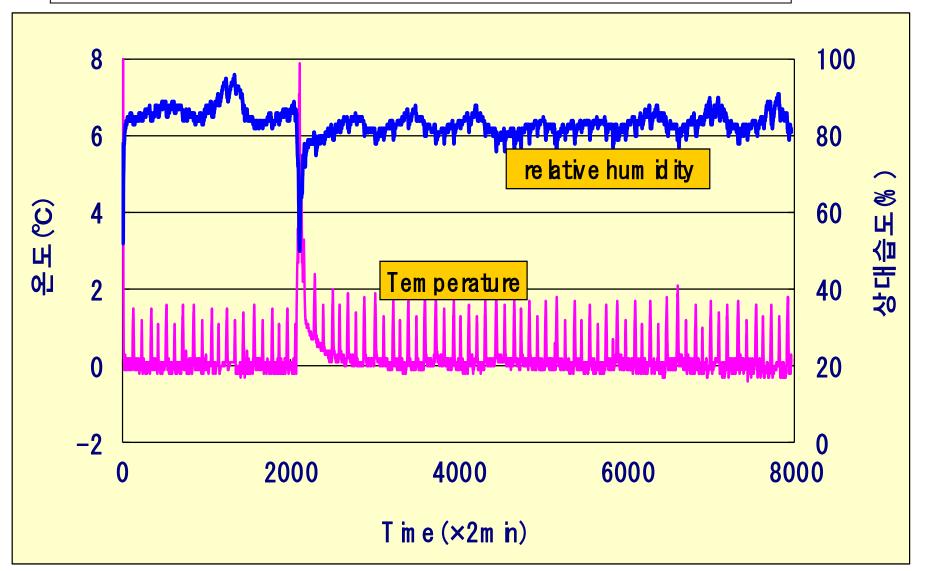
- To ensure that the first thing is to leave first :
 - mark the date of warehousing
- 20~30cm from the wall
- Place 20cm of space on each One meter of storage box
- Put at least 60cm above the ceiling
- Place palettes on the floor : be careful of airways
- The storage box must have a lot of ventilation.

 Internal dew condensation in high temperature and poor ventilation

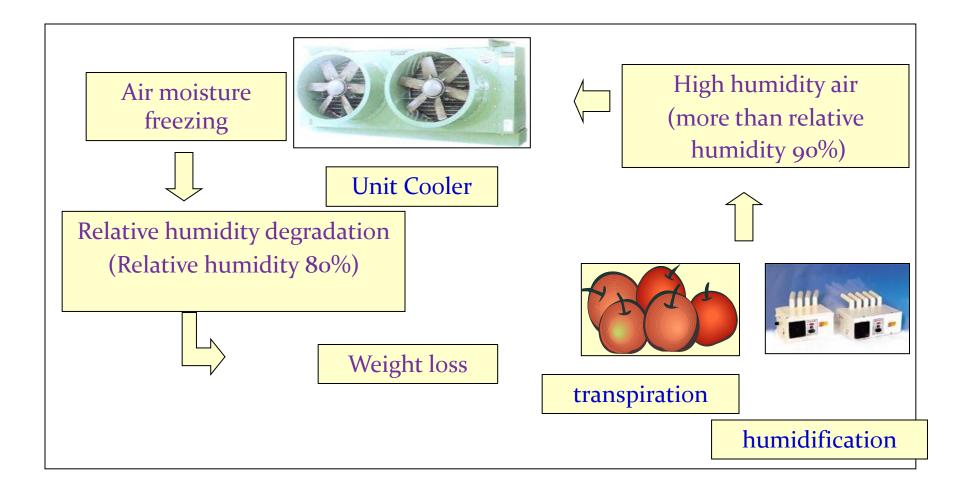
á ÅÝÕõĐÃâ

á èøÛÚĐĐÿÙãÜ â

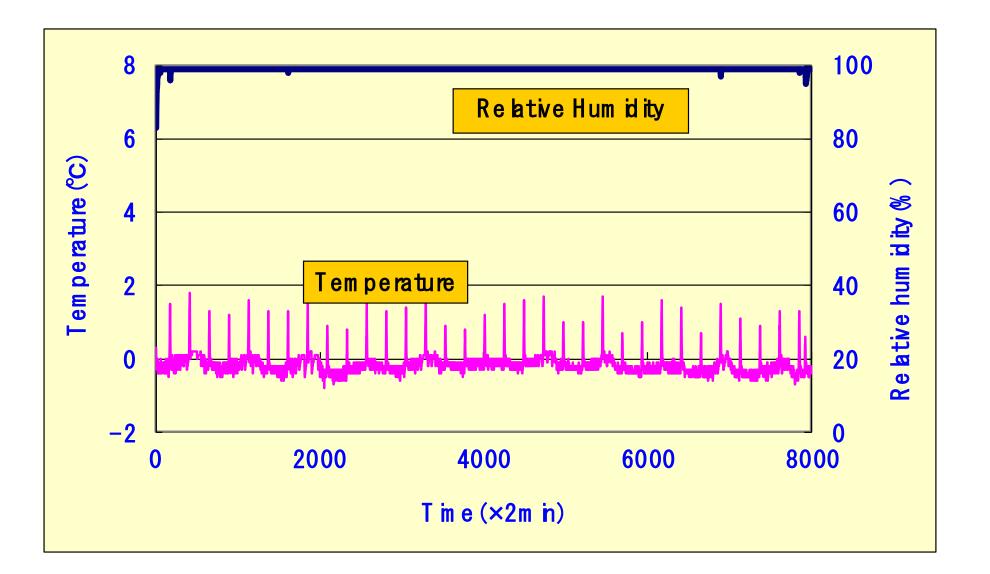
- Maintain proper temperature and relative humidity
 - Appropriate conditions are different for each crop
 - Prevent Respiration and water loss
- Inhibition and elimination of ethylene production
 - Do not store ethylene-producing and sensitive crops mixed
 - Corrupted, damaged, over-ripened fruits elimination
 - Storage Container disinfection
 - Ventilation
 - No engine operation, smoking, oil or gas stove
 - Ethylene remover : Absorption, Decomposition
- Forwarding : Prevention of condensation
 - Low-temperature transport
 - Refrigerate transport
 - use condensation protect cover
 - Elevation Temperature

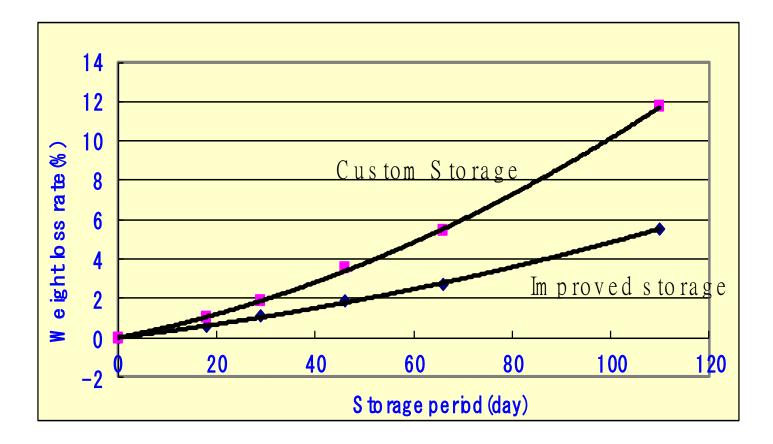

• New technology for storage management

Distribution period according to temperature and relative humidity(Graph)


Temperature(°C)		(0		25			
Humidity(%)	65	75	85	95	65	75	85	95
Weight reduction(%/ day)	0.33	0.24	0.14	0.05	2.00	1.44	0.88	0.32
Expire date (days)	9	13	21	60	1	2	3	9

Temperature and relative humidity of practice


low temperature storage


Causes of low humidity in low temperature storage

Effect of high humidity unit cooler

Reduced weight loss(pear)

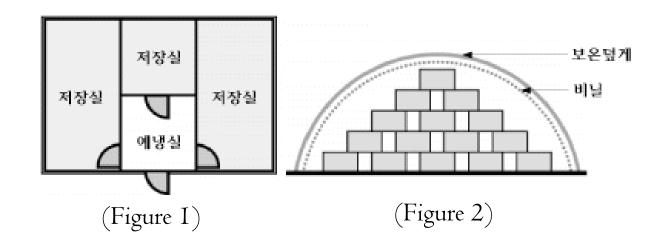
Reduce power consumption

(Unit:kWh)

division	'02.Dec	'03.Jar	'03.Feb	index(%)
Custom type	1,044	1,062	928	100
Improved type	529	414	368	43

prevent condensation

ĨÛÿÛÚõÙĐã Òãú đÒÚŸÒÜÛ , êĐĐ õÛÃđÛøÒõÝøÛ ÎõĐøÒÜÛ , íÛ, èÒÚŸÒÜÛ


æĐøĐÒøúÙãÜ ÒÜøÙÚÝÿõÝøÒÿ đøĐúÝÚõ ÒûõÛø ÕõĐøÒÜÛ

a) Use a pre-cooling facility. (Figure I)

If the temperature in the storage room rise slowly, there is not condensation.

b) Solve it by building brick.(Figure 2)

c) Use a lagging cover. (If container box is used)

á ÚĐãúÛãÕÒõÙĐã đøÛýÛãõ ÚĐýÛøâ

Mucahs Gracias !!!

